inorganic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Xin Yuan,* Ru-Ji Wang, **De-Zhong Shen, Xiao-Qing** Wang and Guang-Qiu Shen

Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China

Correspondence e-mail yuanx02@mails.tsinghua.edu.cn

Key indicators

Single-crystal X-ray study T = 296 K Mean $\sigma(O-B) = 0.011 \text{ Å}$ Disorder in main residue R factor = 0.032 wR factor = 0.079 Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Cd_{1.17}Zn_{0.83}B₂O₅, a new cadmium zinc diborate

Crystals of cadmium zinc diborate, Cd_{1.17}Zn_{0.83}B₂O₅, have been obtained by spontaneous nucleation in a platinum crucible at 1072 K. The crystal structure exhibits diborate groups, $B_2O_5^{4-}$, sharing O atoms with considerably distorted $M1O_6$ octahedra and $M2O_4$ tetrahedra. Both metal centers are disordered in the proportion Cd:Zn = 0.92:0.08 on the M1 site and Cd:Zn = 0.25:0.75 on the M2 site. A strong secondharmonic generation has been observed for the title compound when excited with an Nd:YAG laser ($\lambda = 1064$ nm).

Received 6 June 2005 Accepted 1 August 2005 Online 12 August 2005

Comment

Inorganic borates continue to be an active area of research, with the aim of finding new compounds with interesting optical properties. In the CdO-ZnO-B₂O₃ pseudo-ternary system, four compounds, viz. Cd₂ZnB₄O₉ (Harrison & Hummel, 1959), $CdZn_2B_2O_6$ (Harrison & Hummel, 1959), Cd_{0.5}Zn_{0.5}B₄O₇ (Laureiro et al., 1988) and Cd₃Zn₃B₄O₁₂ (Whitaker & Channell, 1993), have been reported. The crystal structure of Cd₃Zn₃B₄O₁₂ was determined from single-crystal X-ray data (Sun et al., 2003), whereas for the others only X-ray powder data were published. In the present work, a new cadmium zinc diborate with the formula Cd_{1.17}Zn_{0.83}B₂O₅ has been synthesized and its structure determined from singlecrystal data.

The structure of Cd_{1.17}Zn_{0.83}B₂O₅ represents a new structure type. It is based on a three-dimensional framework built

represent B atoms, small open circles represent O atoms, while large © 2005 International Union of Crystallography hatched circles represent Cd and Zn atoms on M1 and M2 sites, respectively.

of B_2O_5 units sharing O atoms with considerably distorted $M1O_6$ octahedra and $M2O_4$ tetrahedra (Fig. 1). Both metal centers are disordered in the proportion Cd:Zn = 0.92:0.08 on the octahedral M1 site and Cd:Zn = 0.25:0.75 on the tetrahedral M2 site. The $B_2O_5^{4-}$ anion is composed of two BO₃ groups, both of which are slightly distorted from the ideal triangular geometry. The bridging B–O–B angle of the diborate anion is 132.0 (6)° (Fig. 2). Each O atom, except the bridging O1 atom of the B_2O_5 group, belongs to a BO₃ group and an $M1O_6$ octahedron or an $M2O_4$ tetrahedron.

The coordination environments of the metal sites in $Cd_{1.17}Zn_{0.83}B_2O_5$ are different from those of $Cd_3Zn_3B_4O_{12}$ (Sun *et al.*, 2003). In the diborate compound, the coordination around *M*1 is considerably distorted octahedral, which is augmented by having an additional long bond with 2.695 (6) Å. Site *M*2 is surrounded by four O atoms with an average bond length of 2.049 Å. However, there are two other longer *M*2–O bonds, with distances of 2.712 (5) Å and 2.907 (6) Å, respectively. In $Cd_3Zn_3B_4O_{12}$, the metal center of the MO₄ tetrahedron is statistically occupied by Cd and Zn in the proportion 1:1. The average *M*–O bond length of 2.064 (4) Å is slightly longer than that of the *M*1O₄ group of the title compound, owing to the higher proportion of Cd at this site.

From the viewpoint of the crystal structure, both the $B_2O_5^{4-}$ groups, which are composed of nearly planar BO₃ groups, and the distorted MO_x polyhedra are favorable for superposition of microscopic second-order NLO susceptibilities. In fact, a strong second-harmonic generation (SHG) was observed for $Cd_{1.17}Zn_{0.83}B_2O_5$ single crystals when excited with Nd:YAG laser radiation ($\lambda = 1064$ nm). The powder SHG is over two times as large as that of KH₂PO₄ (KDP) crystals.

Experimental

Crystals of the title compound were grown by spontaneous nucleation in a platinum crucible using a vertical cylindrical electric furnace. Starting materials were prepared from a mixture of CdO (35.2 wt%), ZnO (22.3 wt%) and H₃BO₃ (42.5 wt%). Crystal growth was carried out at 1072 K in air. A large quantity of colorless needle-shaped crystals with size of up to $10 \times 1.5 \times 1$ mm were obtained from the melt.

Crystal data

$Cd_{1.17}Zn_{0.83}B_2O_5$	Mo $K\alpha$ radiation	
$M_r = 287.46$	Cell parameters from 3098	
Orthorhombic, $P2_12_12_1$	reflections	
a = 3.4147 (4) Å	$\theta = 2.3 - 30.0^{\circ}$	
b = 6.5060 (7) Å	$\mu = 11.33 \text{ mm}^{-1}$	
c = 17.8263 (19) Å	T = 296 (2) K	
V = 396.03 (8) Å ³	Needle, colorless	
Z = 4	$0.22 \times 0.10 \times 0.10 \text{ mm}$	
$D_x = 4.686 \text{ Mg m}^{-3}$		
Data collection		
Bruker SMART APEX CCD	1101 independent reflections	
diffractometer	1100 reflections with $I > 2\sigma(I)$	
ω scans	$R_{\rm int} = 0.028$	
Absorption correction: multi-scan	$\theta_{\rm max} = 30.0^{\circ}$	
(SADABS; Bruker, 1997)	$h = -4 \rightarrow 4$	
$T_{\text{min}} = 0.090$ $T_{\text{max}} = 0.322$	$k = -5 \rightarrow 9$	

 $l = -23 \rightarrow 24$

Figure 2

A view of the title compound, with 50% probability displacement ellipsoids, showing the atomic numbering scheme. [Symmetry codes: (i) $\frac{1}{2}$ + $x, \frac{3}{2} - y, 1 - z$; (ii) $-\frac{1}{2} + x, \frac{3}{2} - y, 1 - z$; (iii) 1 + x, y, z; (iv) $\frac{1}{2} + x, \frac{1}{2} - y, 1 - z$; (v) $-x, \frac{1}{2} + y, \frac{1}{2} - z$; (vi) -1 + x, y, z; (vii) x, 1 + y, z; (viii) x, -1 + y, z.]

Refinement

Refinement on F^2 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 2.83 \text{ e } \text{\AA}^{-3}$ $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.079$ $\Delta \rho_{\rm min} = -2.07 \text{ e } \text{\AA}^{-3}$ S = 1.04Extinction correction: SHELXL97 1101 reflections Extinction coefficient: 0.040 (2) 85 parameters Absolute structure: Flack (1983), $w = 1/[\sigma^2(F_0^2) + (0.0118P)^2]$ 380 Friedel pairs + 10.0237P] Flack parameter: 0.13 (5) where $P = (F_o^2 + 2F_c^2)/3$

Table 1

Selected geometric parameters (Å, °).

$M1-O3^{i}$	2.231 (6)	$M2-O2^{vi}$	2.108 (7)
M1-O4	2.260 (6)	$M2-O1^{v}$	2.712 (5)
$M1-O3^{ii}$	2.283 (6)	$M2-O1^{vii}$	2.907 (6)
$M1-O4^{iii}$	2.339 (6)	O1-B2 ^{viii}	1.387 (10)
$M1-O4^{iv}$	2.428 (6)	O1-B1	1.396 (10)
M1-O2	2.432 (6)	O2-B2	1.389 (10)
M1-O3	2.695 (6)	O3-B2	1.346 (10)
M2-O5	1.997 (7)	O4-B1	1.365 (10)
$M2-O5^{v}$	1.997 (7)	O5-B1	1.360 (10)
M2-O2	2.092 (7)		
$O3^{i} - M1 - O4$	164.5 (2)	O5-M2-O2	100.7 (3)
$O3^{i} - M1 - O3^{ii}$	98.3 (2)	$O5^{v} - M2 - O2$	111.3 (3)
$O4 - M1 - O3^{ii}$	81.2 (2)	$O5-M2-O2^{vi}$	99.6 (3)
$O3^{i} - M1 - O4^{iii}$	80.6 (2)	$O5^{v} - M2 - O2^{vi}$	104.1 (3)
$O4-M1-O4^{iii}$	95.9 (2)	$O2-M2-O2^{vi}$	108.8 (3)
$O3^{ii} - M1 - O4^{iii}$	165.0 (2)	$O5 - M2 - O1^{v}$	77.4 (2)
$O3^{i} - M1 - O4^{iv}$	81.5 (2)	$05^{v} - M2 - 01^{v}$	55.9 (2)
$O4 - M1 - O4^{iv}$	83.0 (2)	$O2 - M2 - O1^{v}$	149.4 (2)
$O3^{ii} - M1 - O4^{iv}$	83.6 (2)	$O2^{vi} - M2 - O1^{v}$	101.6 (2)
$O4^{iii} - M1 - O4^{iv}$	81.4 (2)	$O5-M2-O1^{vii}$	152.6 (2)
$O3^{i} - M1 - O2$	112.7 (2)	$O5^{v} - M2 - O1^{vii}$	72.6 (2)
O4-M1-O2	82.5 (2)	$O2-M2-O1^{vii}$	52.82 (19)
$O3^{ii} - M1 - O2$	99.9 (2)	$O2^{vi} - M2 - O1^{vii}$	85.3 (2)
$O4^{iii} - M1 - O2$	94.2 (2)	$O1^{v} - M2 - O1^{vii}$	128.32 (19)
$O4^{iv} - M1 - O2$	164.4 (2)	$B2^{viii}$ -O1-B1	132.0 (6)
$O3^{i} - M1 - O3$	72.00 (18)	O5-B1-O4	123.7 (8)
O4-M1-O3	121.8 (2)	O5-B1-O1	112.8 (7)
$O3^{ii} - M1 - O3$	71.28 (19)	O4-B1-O1	123.4 (7)
$O4^{iii} - M1 - O3$	121.8 (2)	O3-B2-O1 ^{vii}	125.1 (7)
$O4^{iv} - M1 - O3$	139.81 (17)	O3-B2-O2	119.8 (7)
O2-M1-O3	54.67 (18)	O1 ^{vii} -B2-O2	115.0 (7)
$05 - M2 - 05^{v}$	130.67 (18)		

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (iii) x + 1, y, z; (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (v) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (vi) x - 1, y, z; (vii) x, y + 1, z; (viii) x, y - 1, z.

2308 measured reflections

The crystal of $Cd_{1.17}Zn_{0.83}B_2O_5$ proved to be a partial inversion twin. The occupancies of Cd and Zn on the two metal sites, *M*1 and *M*2, were refined in the final refinement cycles. The results showed that *M*1 is occupied by 0.924 Cd + 0.076 Zn, and *M*2 by 0.247 Cd + 0.753 Zn. These results were confirmed by ICP–AES elemental analysis of selected crystals, which gave an overall ratio of Cd:Zn = 1.45:1. The highest peak and the deepest hole in the final Fourier map are both located 0.83 Å from the *M*1 site.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *XP* in *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

During refinement of the crystal structure, Professor I. D. Brown gave many useful instructions. This work was supported by the National Science Foundation of China (50590402).

References

- Bruker (1997). SHELXTL, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Harrison, D. E. & Hummel, F. A. (1959). J. Electrochem. Soc. 106, 24-26.
- Laureiro, Y., Camps, M. D., Veiga, M. L., Jerez, A. & Pico, C. (1988). Eur. J. Solid State Inorg. Chem. 25, 381–386.
- Sun, T., Pan, F., Wang, R., Shen, G., Wang, X. & Shen, D. (2003). Acta Cryst. C59, i107–i108.
- Whitaker, A. & Channell, A. D. (1993). J. Mater. Sci. 28, 2489-2493.