Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Xin Yuan,* Ru-Ji Wang, De-Zhong Shen, Xiao-Qing Wang and Guang-Qiu Shen

Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China

Correspondence e-mail:
yuanx02@mails.tsinghua.edu.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{O}-\mathrm{B})=0.011 \AA$
Disorder in main residue
R factor $=0.032$
$w R$ factor $=0.079$
Data-to-parameter ratio $=13.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

$\mathrm{Cd}_{1.17} \mathrm{Zn}_{0.83} \mathrm{~B}_{2} \mathrm{O}_{5}$, a new cadmium zinc diborate

Crystals of cadmium zinc diborate, $\mathrm{Cd}_{1.17} \mathrm{Zn}_{0.83} \mathrm{~B}_{2} \mathrm{O}_{5}$, have been obtained by spontaneous nucleation in a platinum crucible at 1072 K . The crystal structure exhibits diborate groups, $\mathrm{B}_{2} \mathrm{O}_{5}{ }^{4-}$, sharing O atoms with considerably distorted $M 1 \mathrm{O}_{6}$ octahedra and $M 2 \mathrm{O}_{4}$ tetrahedra. Both metal centers are disordered in the proportion $\mathrm{Cd}: \mathrm{Zn}=0.92: 0.08$ on the $M 1$ site and $\mathrm{Cd}: \mathrm{Zn}=0.25: 0.75$ on the $M 2$ site. A strong secondharmonic generation has been observed for the title compound when excited with an Nd:YAG laser $(\lambda=1064 \mathrm{~nm})$.

Comment

Inorganic borates continue to be an active area of research, with the aim of finding new compounds with interesting optical properties. In the $\mathrm{CdO}-\mathrm{ZnO}-\mathrm{B}_{2} \mathrm{O}_{3}$ pseudo-ternary system, four compounds, viz. $\mathrm{Cd}_{2} \mathrm{ZnB}_{4} \mathrm{O}_{9}$ (Harrison \& Hummel, 1959), $\mathrm{CdZn}_{2} \mathrm{~B}_{2} \mathrm{O}_{6}$ (Harrison \& Hummel, 1959), $\mathrm{Cd}_{0.5} \mathrm{Zn}_{0.5} \mathrm{~B}_{4} \mathrm{O}_{7}$ (Laureiro et al., 1988) and $\mathrm{Cd}_{3} \mathrm{Zn}_{3} \mathrm{~B}_{4} \mathrm{O}_{12}$ (Whitaker \& Channell, 1993), have been reported. The crystal structure of $\mathrm{Cd}_{3} \mathrm{Zn}_{3} \mathrm{~B}_{4} \mathrm{O}_{12}$ was determined from single-crystal X-ray data (Sun et al., 2003), whereas for the others only X-ray powder data were published. In the present work, a new cadmium zinc diborate with the formula $\mathrm{Cd}_{1.17} \mathrm{Zn}_{0.83} \mathrm{~B}_{2} \mathrm{O}_{5}$ has been synthesized and its structure determined from singlecrystal data.

The structure of $\mathrm{Cd}_{1.17} \mathrm{Zn}_{0.83} \mathrm{~B}_{2} \mathrm{O}_{5}$ represents a new structure type. It is based on a three-dimensional framework built

Figure 1

A view of the crystal structure along the a direction. Small shaded circles represent B atoms, small open circles represent O atoms, while large hatched circles represent Cd and Zn atoms on $M 1$ and $M 2$ sites, respectively.

Received 6 June 2005
Accepted 1 August 2005
Online 12 August 2005
of $\mathrm{B}_{2} \mathrm{O}_{5}$ units sharing O atoms with considerably distorted $M 1 \mathrm{O}_{6}$ octahedra and $M 2 \mathrm{O}_{4}$ tetrahedra (Fig. 1). Both metal centers are disordered in the proportion $\mathrm{Cd}: \mathrm{Zn}=0.92: 0.08$ on the octahedral $M 1$ site and $\mathrm{Cd}: \mathrm{Zn}=0.25: 0.75$ on the tetrahedral $M 2$ site. The $\mathrm{B}_{2} \mathrm{O}_{5}{ }^{4-}$ anion is composed of two BO_{3} groups, both of which are slightly distorted from the ideal triangular geometry. The bridging $\mathrm{B}-\mathrm{O}-\mathrm{B}$ angle of the diborate anion is $132.0(6)^{\circ}$ (Fig. 2). Each O atom, except the bridging O 1 atom of the $\mathrm{B}_{2} \mathrm{O}_{5}$ group, belongs to a BO_{3} group and an $M 1 \mathrm{O}_{6}$ octahedron or an $\mathrm{M2O}_{4}$ tetrahedron.

The coordination environments of the metal sites in $\mathrm{Cd}_{1.17} \mathrm{Zn}_{0.83} \mathrm{~B}_{2} \mathrm{O}_{5}$ are different from those of $\mathrm{Cd}_{3} \mathrm{Zn}_{3} \mathrm{~B}_{4} \mathrm{O}_{12}$ (Sun et al., 2003). In the diborate compound, the coordination around $M 1$ is considerably distorted octahedral, which is augmented by having an additional long bond with 2.695 (6) A. Site $M 2$ is surrounded by four O atoms with an average bond length of $2.049 \AA$. However, there are two other longer $M 2-\mathrm{O}$ bonds, with distances of $2.712(5) \AA$ and 2.907 (6) \AA, respectively. In $\mathrm{Cd}_{3} \mathrm{Zn}_{3} \mathrm{~B}_{4} \mathrm{O}_{12}$, the metal center of the MO_{4} tetrahedron is statistically occupied by Cd and Zn in the proportion 1:1. The average $M-\mathrm{O}$ bond length of 2.064 (4) \AA is slightly longer than that of the $M 1 \mathrm{O}_{4}$ group of the title compound, owing to the higher proportion of Cd at this site.

From the viewpoint of the crystal structure, both the $\mathrm{B}_{2} \mathrm{O}_{5}{ }^{4-}$ groups, which are composed of nearly planar BO_{3} groups, and the distorted $M \mathrm{O}_{x}$ polyhedra are favorable for superposition of microscopic second-order NLO susceptibilities. In fact, a strong second-harmonic generation (SHG) was observed for $\mathrm{Cd}_{1.17} \mathrm{Zn}_{0.83} \mathrm{~B}_{2} \mathrm{O}_{5}$ single crystals when excited with Nd:YAG laser radiation $(\lambda=1064 \mathrm{~nm})$. The powder SHG is over two times as large as that of $\mathrm{KH}_{2} \mathrm{PO}_{4}$ (KDP) crystals.

Experimental

Crystals of the title compound were grown by spontaneous nucleation in a platinum crucible using a vertical cylindrical electric furnace. Starting materials were prepared from a mixture of CdO ($35.2 \mathrm{wt} \%$), $\mathrm{ZnO}(22.3 \mathrm{wt} \%)$ and $\mathrm{H}_{3} \mathrm{BO}_{3}$ ($42.5 \mathrm{wt} \%$). Crystal growth was carried out at 1072 K in air. A large quantity of colorless needle-shaped crystals with size of up to $10 \times 1.5 \times 1 \mathrm{~mm}$ were obtained from the melt.

Crystal data

$\mathrm{Cd}_{1.17} \mathrm{Zn}_{0.83} \mathrm{~B}_{2} \mathrm{O}_{5}$
$M_{r}=287.46$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=3.4147(4) \AA$
$b=6.5060(7) \AA$
$c=17.8263(19) \AA$
$V=396.03(8) \AA^{3}$
$Z=4$
$D_{x}=4.686 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART APEX CCD diffractometer

ω scans

Absorption correction: multi-scan (SADABS; Bruker, 1997) $T_{\text {min }}=0.090, T_{\text {max }}=0.322$ 2308 measured reflections

Mo $K \alpha$ radiation
Cell parameters from 3098 reflections
$\theta=2.3-30.0^{\circ}$
$\mu=11.33 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Needle, colorless
$0.22 \times 0.10 \times 0.10 \mathrm{~mm}$

1101 independent reflections 1100 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-4 \rightarrow 4$
$k=-5 \rightarrow 9$
$l=-23 \rightarrow 24$

Figure 2
A view of the title compound, with 50% probability displacement ellipsoids, showing the atomic numbering scheme. [Symmetry codes: (i) $\frac{1}{2}$ $+x, \frac{3}{2}-y, 1-z ;$ (ii) $-\frac{1}{2}+x, \frac{3}{2}-y, 1-z$; (iii) $1+x, y, z ;$ (iv) $\frac{1}{2}+x, \frac{1}{2}-y, 1-$ z; (v) $-x, \frac{1}{2}+y, \frac{1}{2}-z ;$ (vi) $-1+x, y, z$; (vii) $x, 1+y, z$; (viii) $x,-1+y, z$.]

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.079$
$S=1.04$
1101 reflections
85 parameters
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0118 P)^{2}\right.$
$\quad+10.0237 P]$
\quad where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=2.83 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-2.07 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.040 (2)
Absolute structure: Flack (1983),
380 Friedel pairs
Flack parameter: 0.13 (5)

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

$\mathrm{M} 1-\mathrm{O} 3{ }^{\text {i }}$	2.231 (6)	$\mathrm{M} 2-\mathrm{O} 2^{\text {vi }}$	2.108 (7)
M1-O4	2.260 (6)	$\mathrm{M2}-\mathrm{O}^{\text {v }}$	2.712 (5)
$\mathrm{M1}-\mathrm{O}^{\text {iii }}$	2.283 (6)	$\mathrm{M} 2-\mathrm{O} 1^{\text {vii }}$	2.907 (6)
$\mathrm{M} 1-\mathrm{O} 4^{\text {iii }}$	2.339 (6)	$\mathrm{O} 1-\mathrm{B} 2^{\text {viii }}$	1.387 (10)
$\mathrm{M} 1-\mathrm{O} 4^{\text {iv }}$	2.428 (6)	O1-B1	1.396 (10)
M1-O2	2.432 (6)	O2-B2	1.389 (10)
M1-O3	2.695 (6)	O3-B2	1.346 (10)
M2-O5	1.997 (7)	O4-B1	1.365 (10)
$\mathrm{M} 2-\mathrm{O}^{\text {v }}$	1.997 (7)	O5-B1	1.360 (10)
M2-O2	2.092 (7)		
$\mathrm{O}^{\text {i }}-\mathrm{M} 1-\mathrm{O} 4$	164.5 (2)	$\mathrm{O} 5-\mathrm{M} 2-\mathrm{O} 2$	100.7 (3)
$\mathrm{O} 3^{\mathrm{i}}-\mathrm{M} 1-\mathrm{O} 3^{\text {ii }}$	98.3 (2)	$\mathrm{O} 5^{\mathrm{v}}-\mathrm{M} 2-\mathrm{O} 2$	111.3 (3)
$\mathrm{O} 4-\mathrm{M} 1-\mathrm{O}^{\text {ii }}$	81.2 (2)	$\mathrm{O} 5-\mathrm{M} 2-\mathrm{O} 2{ }^{\text {vi }}$	99.6 (3)
$\mathrm{O} 3^{\mathrm{i}}-\mathrm{M} 1-\mathrm{O} 4^{\text {iii }}$	80.6 (2)	$\mathrm{O} 5^{\mathrm{v}}-\mathrm{M} 2-\mathrm{O} 2^{\text {vi }}$	104.1 (3)
$\mathrm{O} 4-\mathrm{M} 1-\mathrm{O} 4^{\text {iii }}$	95.9 (2)	$\mathrm{O} 2-\mathrm{M} 2-\mathrm{O} 2^{\text {vi }}$	108.8 (3)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{M1}-\mathrm{O}^{\text {iii }}$	165.0 (2)	$\mathrm{O} 5-\mathrm{M} 2-\mathrm{O}^{\text {v }}$	77.4 (2)
$\mathrm{O} 3^{\mathrm{i}}-\mathrm{M} 1-\mathrm{O} 4^{\text {iv }}$	81.5 (2)	$\mathrm{O}^{\mathrm{v}}-\mathrm{M} 2-\mathrm{O} 1^{\mathrm{v}}$	55.9 (2)
$\mathrm{O} 4-\mathrm{M} 1-\mathrm{O} 4^{\text {iv }}$	83.0 (2)	$\mathrm{O} 2-\mathrm{M} 2-\mathrm{O} 1^{\text {v }}$	149.4 (2)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{M1}-\mathrm{O}^{\text {iv }}$	83.6 (2)	$\mathrm{O} 2^{\mathrm{vi}}-\mathrm{M} 2-\mathrm{O} 1^{\mathrm{v}}$	101.6 (2)
$\mathrm{O} 4^{\mathrm{iii}}-\mathrm{M} 1-\mathrm{O} 4^{\text {iv }}$	81.4 (2)	$\mathrm{O} 5-\mathrm{M} 2-\mathrm{O}^{\text {vii }}$	152.6 (2)
$\mathrm{O} 3^{\mathrm{i}}-\mathrm{M} 1-\mathrm{O} 2$	112.7 (2)	$\mathrm{O} 5^{\mathrm{v}}-\mathrm{M} 2-\mathrm{O} 1^{\text {vii }}$	72.6 (2)
$\mathrm{O} 4-\mathrm{M} 1-\mathrm{O} 2$	82.5 (2)	$\mathrm{O} 2-\mathrm{M} 2-\mathrm{O} 1^{\text {vii }}$	52.82 (19)
$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{M} 1-\mathrm{O} 2$	99.9 (2)	$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{M} 2-\mathrm{O} 1^{\text {vii }}$	85.3 (2)
$\mathrm{O} 4{ }^{\text {iiii }}-\mathrm{M} 1-\mathrm{O} 2$	94.2 (2)	$\mathrm{O} 1^{\mathrm{v}}-\mathrm{M} 2-\mathrm{O} 1^{\text {vii }}$	128.32 (19)
$\mathrm{O} 4^{\text {iv }}-\mathrm{M} 1-\mathrm{O} 2$	164.4 (2)	$\mathrm{B} 2{ }^{\text {viii }}-\mathrm{O} 1-\mathrm{B} 1$	132.0 (6)
$\mathrm{O}^{\text {i }}-\mathrm{M} 1-\mathrm{O} 3$	72.00 (18)	O5-B1-O4	123.7 (8)
$\mathrm{O} 4-\mathrm{M} 1-\mathrm{O} 3$	121.8 (2)	O5-B1-O1	112.8 (7)
$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{M} 1-\mathrm{O} 3$	71.28 (19)	$\mathrm{O} 4-\mathrm{B} 1-\mathrm{O} 1$	123.4 (7)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{M} 1-\mathrm{O} 3$	121.8 (2)	$\mathrm{O} 3-\mathrm{B} 2-\mathrm{O} 1^{\text {vii }}$	125.1 (7)
$\mathrm{O} 4^{\text {iv }}-\mathrm{M} 1-\mathrm{O} 3$	139.81 (17)	$\mathrm{O} 3-\mathrm{B} 2-\mathrm{O} 2$	119.8 (7)
$\mathrm{O} 2-\mathrm{M} 1-\mathrm{O} 3$	54.67 (18)	$\mathrm{O} 1^{\text {vii }}-\mathrm{B} 2-\mathrm{O} 2$	115.0 (7)
$\mathrm{O} 5-\mathrm{M} 2-\mathrm{O} 5^{\text {v }}$	130.67 (18)		

inorganic papers

The crystal of $\mathrm{Cd}_{1.17} \mathrm{Zn}_{0.83} \mathrm{~B}_{2} \mathrm{O}_{5}$ proved to be a partial inversion twin. The occupancies of Cd and Zn on the two metal sites, $M 1$ and $M 2$, were refined in the final refinement cycles. The results showed that $M 1$ is occupied by $0.924 \mathrm{Cd}+0.076 \mathrm{Zn}$, and $M 2$ by $0.247 \mathrm{Cd}+$ 0.753 Zn . These results were confirmed by ICP-AES elemental analysis of selected crystals, which gave an overall ratio of $\mathrm{Cd}: \mathrm{Zn}=$ 1.45:1. The highest peak and the deepest hole in the final Fourier map are both located $0.83 \AA$ from the $M 1$ site.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

During refinement of the crystal structure, Professor I. D. Brown gave many useful instructions. This work was supported by the National Science Foundation of China (50590402).

References

Bruker (1997). SHELXTL, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Harrison, D. E. \& Hummel, F. A. (1959). J. Electrochem. Soc. 106, 24-26.
Laureiro, Y., Camps, M. D., Veiga, M. L., Jerez, A. \& Pico, C. (1988). Eur. J. Solid State Inorg. Chem. 25, 381-386.
Sun, T., Pan, F., Wang, R., Shen, G., Wang, X. \& Shen, D. (2003). Acta Cryst. C59, i107-i108.
Whitaker, A. \& Channell, A. D. (1993). J. Mater. Sci. 28, 2489-2493.

